## Math 2263, Quiz 7

You must show all work for full credit, you have 15 min to finish it.

1. $(7 \mathrm{pt})$ Evaluate the double integral: $\iint_{D} y^{2} d A$ where D is the triangular region with vertices $(0,1),(1,2),(4,1)$.

Solution: We are going to integrate $x$ first, then $y$. The left function is $x=y-1$, the right function is $x=7-3 y$, and $y \in[1,2]$. So $\iint_{D} y^{2} d A=$ $\int_{1}^{2} \int_{y-1}^{7-3 y} y^{2} d x d y=\int_{1}^{2} 8 y^{2}-4 y^{3} d y=\frac{11}{3}$.
2. ( 8 pt ) Evaluate the given integral by changing to polar coordinates: $\iint_{D}(x+y) d A$ where D is the region $\left\{(x, y) \mid x^{2}+y^{2} \leq 4, x \geq 0, y \geq 0\right\}$.

Solution: Let $x=r \cos (\theta), y=r \sin (\theta)$, then we know $r \in[0,2], \theta \in\left[0, \frac{\pi}{2}\right]$. Our integral $\iint_{D}(x+y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r(r \cos (\theta)+r \sin (\theta)) d r d \theta=\int_{0}^{\frac{\pi}{2}} \frac{8}{3}(\cos (\theta)+$ $\sin (\theta)) d \theta=\frac{16}{3}$.

